

Tecnología Electrónica 3º Ingeniero Aeronáutico

Introducción a los procesadores digitales de señal (DSPs)

Dra. Ma Ángeles Martín Prats

Curso 2010/2011

Reseña histórica

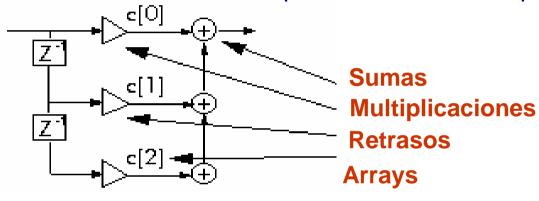
- Años 60: 1^{er} procesado de señales digitales en tiempo real, sobre máquinas VAX y DEC PDP.
- Años 70: máquinas de cálculo que usaban chips de lógica discreta (tecnología TTL) y unidad aritmética programable de 4 bits para realizar procesamiento de datos.
- 1980: 1^{er} chip moderno (NEC).
- 1982: 1er DSP en tecnología TTL (TMS32010-TI).
- Tecnología CMOS.

Conceptos básicos (I)

- DSP: microprocesador orientado al procesamiento de señales digitales y a la realización de cálculos a alta velocidad.
- Arquitecturas especiales orientadas a realización hardware de cálculos que otros microprocesadores implementan vía software.
- Hardware CPU más complejo que otros microprocesadores.
- Área Si mayor.
- Coste mayor.

Conceptos básicos (II)

- Circuitería optimizada para realizar funciones:
 - Filtrado.
 - Correlación.
 - Análisis espectral.


Muchas operaciones típicas del procesado de señal se ejecutan en un único ciclo de instrucción

Conceptos básicos (III)

- Se diseñan para ser escalables: operación en paralelo.
- Incorporan periféricos de control, de bloqueo del sistema y periféricos E/S de alta velocidad (puertos serie síncronos permiten conectar varios DSPs para aplicaciones con multiprocesadores).
- DSP más versátil y menor coste de desarrollo que ASICs de función fija o FPGAs.
- Se programan en C o ensamblador.

Operaciones típicas DSP

Requieren funciones específicas:

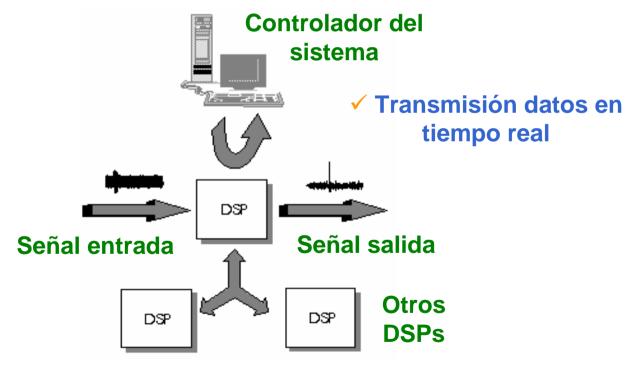
Filtro FIR

- Aritmética alta velocidad especializada.
- Transferencia datos tiempo real.
- Arquitecturas de memoria de acceso múltiple.

/40 Suma y multiplicación en paralelo 51

Procesador DSP32C Lucent

32 Bus simple


Grado de paralelismo

Directamente proporcional al número de operaciones que el DSP es capaz de realizar en un ciclo de reloj

- ✓ Mejoras de la arquitectura interna orientadas a aumentar el paralelismo del sistema.
- ✓ DSPs con múltiples
 CPU que pueden trabajar en paralelo.

Ejemplo: TMS320C6201-

TI: 200MHz

Programación de DSP: lenguaje de programación a alto nivel que simplifica el desarrollo del software al usuario.

Aplicaciones basadas en DSPs

- Telecomunicaciones.
- Control.
- Instrumentación.
- Análisis de imagen y voz.
- Automóvil.
- Medicina.
- Aeronáutica, aerospacial y defensa.
- Etc.

Líneas Investigación de fabricantes de DSPs

Nuevas arquitecturas, compiladores más inteligentes y mejores herramientas de desarrollo y depuración.

Procesamiento de datos en el menor tiempo posible. Compiladores capaces de optimizar el programa en tiempo de ejecución, tarea que complica el desarrollo de los mismos.

Alternativas al uso del DSP

- Ordenador personal → sistema operativo se ejecuta en paralelo con la aplicación de procesado de la señal (fuera de línea).
- Microcontroladores → control de procesos en tiempo real. Se clasifican en función del tamaño del bus de datos. No trabajan en paralelo. Funcionan en solitario.
- FPGA.

Tabla comparativa de tiempos empleados en la realización de operaciones aritméticas lógicas de DSPs y microcontroladores

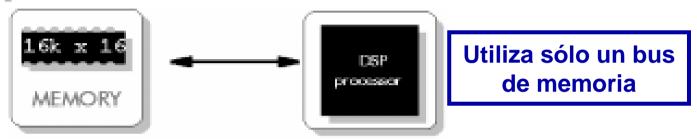
Procesador	Bus datos	Reloj	±	Х	1	√	
DSPs		MHz	ns	ns	μs	μs	
TMS32010	16 bits	5	200	200	< 12.8	< 59	
TMS32020	16 bits	5	200	200	< 3.4	< 59	
TMS320C30	32 bits	33	60	60	< 2	< 2	
TMS320C40	32 bits	40	50	50	<1	<1	
Microcontroladores							
M68HC11	8 bits	8	1000	5000	20.5		
MCS96	16 bits	16	800	1750	2.5		
MC68030	32 bits	20	200	1400	2.8		
IAPX80286	32 bits	8	375	3000	3.12	> 2	
NOVIX4000	32 bits	8	125	3130	5.62	10.62	

Ventajas DSPs

 Optimización del hardware para el procesamiento de señales y manejo de datos en tiempo real.

Fácil reconfiguración (código en lenguaje C).

Fácil escalado → procesamiento en paralelo.


Clasificación de microprocesadores atendiendo a su funcionalidad

- CISC →> 80 instrucciones en código máquina, algunas muy complejas y potentes que precisan muchos ciclos para ejecutarse.
- RISC → pocas instrucciones en código máquina que se ejecutan en un ciclo de trabajo. Permiten optimizar el hardware del sistema.
- SISC → microprocesadores destinados a aplicaciones concretas, instrucciones específicas.

DSPs → CISC y SISC (telefonía móvil)

Estructura interna básica del DSP

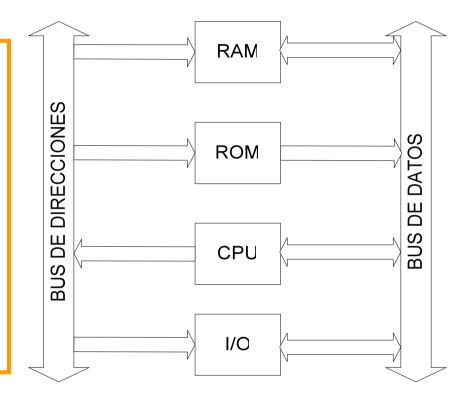
Von-Neuman:

Tipo Harvard:

En DSPs predomina la estructura Tipo Harvard

Arquitectura Harvard extendida o super arquitectura Harvard: con memoria caché para almacenar instrucciones que serán reutilizadas.

Arquitectura tipo Von-Neuman


1^{er} Paso: Sistema microprocesador accede a la memoria del programa para recoger instrucción a ejecutar.

2^{do} Paso: Decodifica instrucción.

3^{er} Paso: Accede a la memoria de datos para leer operandos asociados a la instrucción leída.

4º Paso: Se ejecuta la instrucción.

5º Paso: Comienza nuevo ciclo.

- Instrucciones y datos almacenados en memorias (RAM o ROM), a las que accede la Unidad Central de Procesos (CPU) a través de un único bus de direcciones y datos.
- Programas y datos en la misma memoria. No permite accesos a memoria múltiples.
- El microprocesador puede leer y escribir datos en dispositivos externos mediante buffers E/S.

Arquitectura tipo Von-Neuman modificada

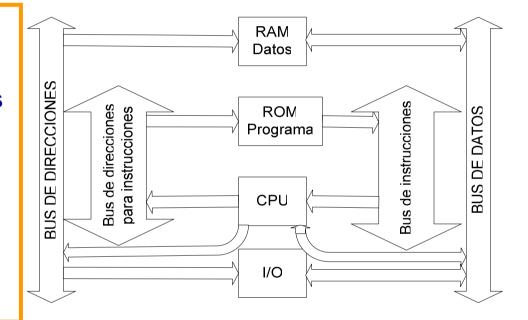
 Permite acceso a memoria múltiple por ciclo de instrucción con reloj de memoria más rápido que el ciclo de instrucción.

Ejemplo: DSP32C

- Reloj a 80MHz: dividido por cuatro para dar 20 millones de instrucciones por segundo (MIPS).
- Reloj memoria a 80 MHz.
- Cada ciclo de instrucción dividida en 4 máquinas de estado.
- Acceso a memoria en cada máquina de estado
- Permite 4 accesos a memoria por ciclo de instrucción (lectura instrucción, operandos necesitados, almacenamiento resultado)

4 máquinas de estado

	STATE	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	0	1
	DATA BUS	I						X	Y										Z	

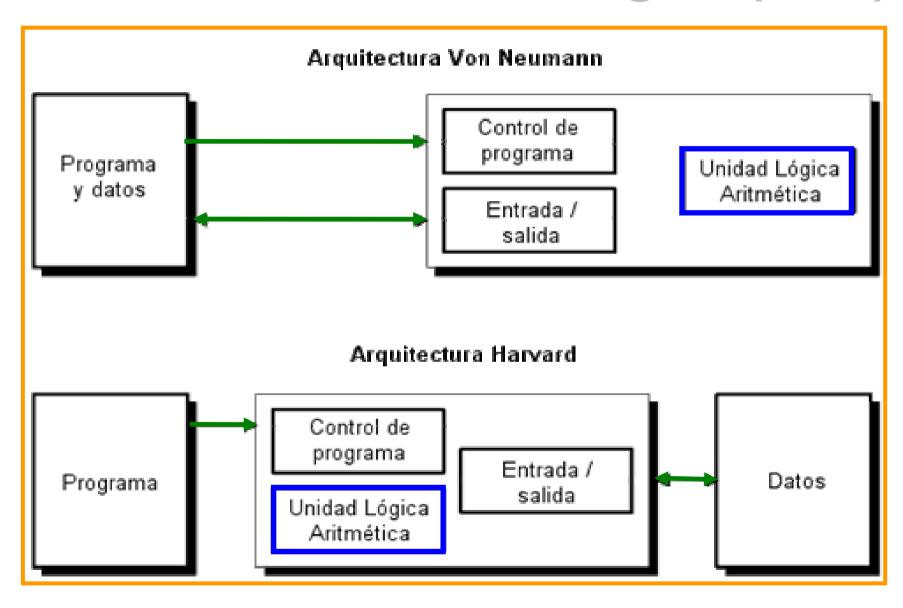

Arquitectura tipo Harvard

1^{er} Paso: CPU lee las instrucciones de la memoria mediante el bus de datos.

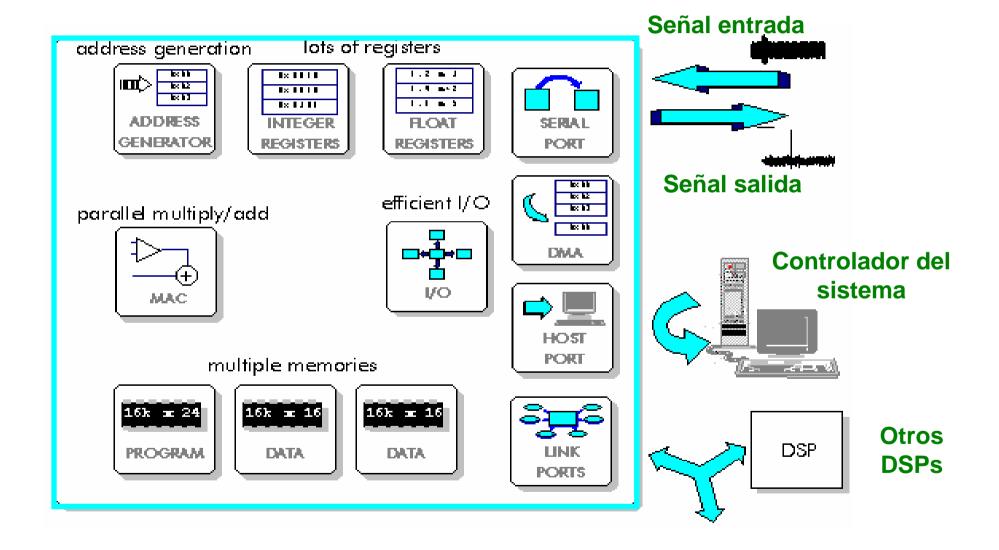
2^{do} **Paso**: Ejecuta las instrucciones leídas previamente.

3^{er} Paso: Accede a la memoria de datos para leer operandos asociados a la instrucción leída.

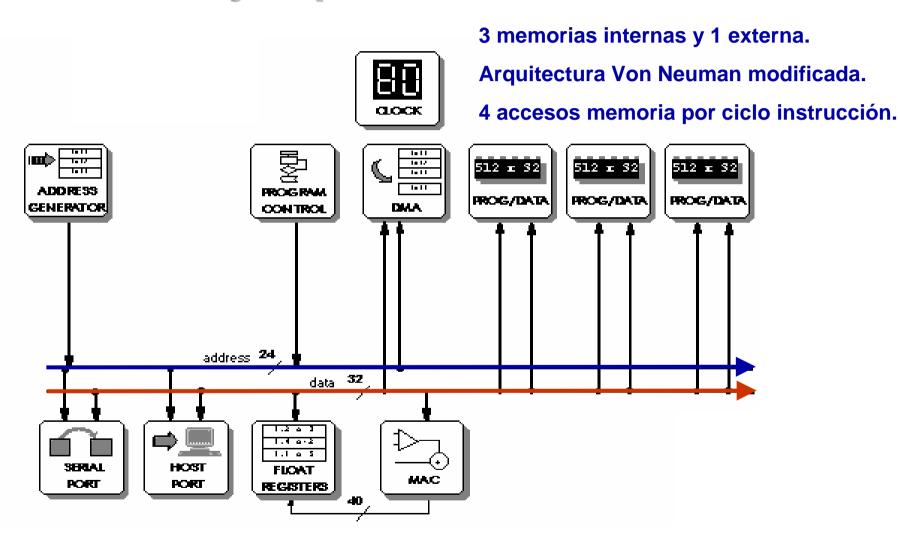
4º Paso: Acceso a datos y ejecución de instrucciones en paralelo (pipeling).

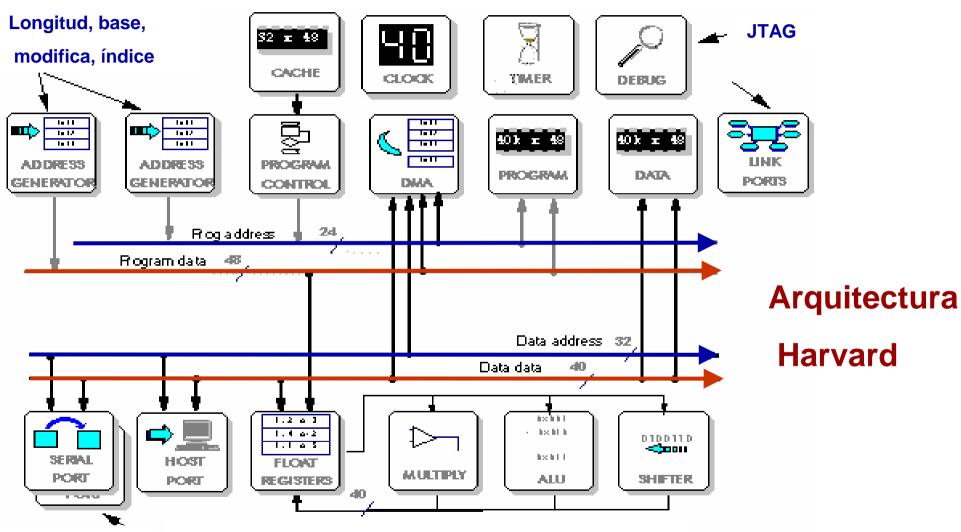


- Se simultanea acceso a las memorias de programa y datos
- Presenta menor tiempo de ejecución que la Von-Neuman.
- El hardware destinado a procesar datos y ejecutar instrucciones reside en distintas partes de la CPU.


Periféricos

- Puertos de entrada / salida.
- Patillas de interrupción externa.
- Unidades de comunicación serie (RS 232).
- Temporizadores.
- Contadores.
- Bucles enganchados en fase (PLL).
- Buses I2C y/o SPI.
- Convertidores A/D y D/A.
- Módulos de control de ancho de pulso.


La unidad aritmético lógica (ALU)


Diagrama de DSP generalizado

Ejemplo: DSP32C

Ejemplo: Analog Devices ADSP21060

Dos puertos serie

Aplicaciones de DSPs en aviónica (I)

- Aplicaciones digitales genéricas:
 - Ventanas de adquisición.
 - Convolución.
 - Correlación.
 - Transformada de Hiltbert.
 - Transformada rápida de Fourier.
 - Filtrado digital.
 - Generación formas de onda,...

- Aplicaciones específicas aviónica:
 - Control de motores.
 - Control convertidores.
 - Computadores control vuelo.
 - Displays.
 - Sistemas de navegación.
 - Guiado de misiles.
 - Sistemas de grabación de datos de vuelo.
 - Sistemas integrados,...

Aplicaciones de DSPs en aviónica (II)

Telecomunicaciones:

- Teléfonos GSM.
- Cancelación ecos.
- Multiplexado de canales.
- Ecualizadores adptativos.
- Transmisión de voz.
- Etc.

Aplicaciones de DSPs en aviónica (III)

Militar:

- Navegación.
- Sónar.
- Procesado de imágenes.
- Radar.
- Guía de misiles.
- Seguridad en las comunicaciones.

Control:

- Robótica.
- Control motores.
- Servocontrol

Otros:

- Cancelación ruidos.
- Navegación.
- Análisis de vibraciones.

DSP vs FPGA

 En sector militar se usan diseños heterogéneos donde se emplean DSPs junto a FPGAs.

 Las FPGAs se usa para pre-procesamiento, coprocesamiento, control E/S, rutado, etc.

Las FPGAs requieren programación específica.

Principales fabricantes de DSPs

- Analog Devices
- Hitachi
- Motorola
- NEC
- SGS-Thomson
- Texas Instruments
- Zilog.

Texas Instruments: DSP

Principal constructor de DSP en ámbito militar.

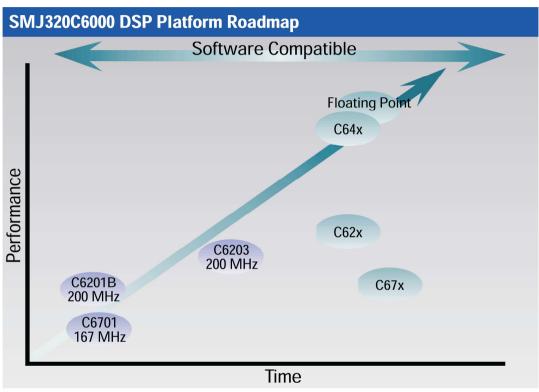
 Dispone de un encapsulado de plástico (EP) especializado para aplicaciones militares.

 La clase V de sus productos está destinada a aplicaciones espaciales

TI: Productos

✓ TMS320C6000 High Performance DSPs:

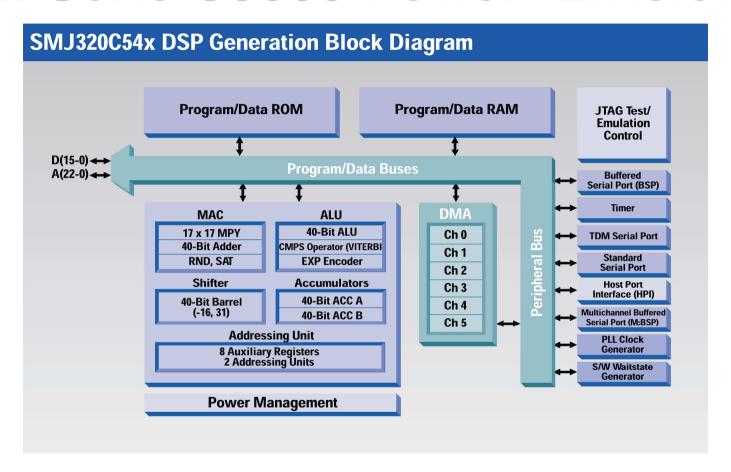
TMS320C62x DSPs TMS320C64x DSPs TMS320C67x DSPs


- ✓ TMS320C5000 Power-Efficient DSPs:
 - ✓ TMS320C54x DSPs
 - ✓ TMS320C55x DSPs
- ✓ TMS320C2000 Digital Signal Controllers:

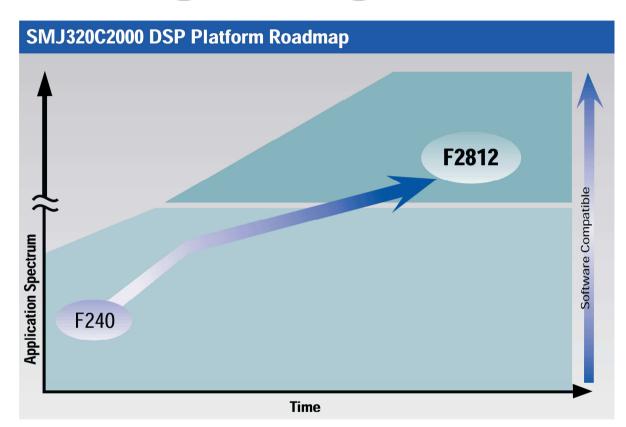
TMS320C24x Controllers TMS320C28x Controllers

✓ Otros TMS320 DSPs:

TMS320C33 DSPs
TMS320C1X DSPs
TMS320C2X DSPs
TMS320C3X DSPs
TMS320C4X DSPs
TMS320C5X DSPs
TMS320C5X DSPs
TMS320C8X DSPs


TI: Serie C6000

The C6000 DSP platform code-compatible roadmap protects your investment.


- 62x: radar, misiles aire-aire, comunicaciones por satélite...
- 64x: comunicaciones, procesamiento de imágenes...
- 67x: reconocimiento de voz, misiles, radar, radio digital...

TI: Serie C5000 Power- Efficient

54x: se usan sobre todo en comunicaciones

TI: C2000 Digital Signal Controller

- Serie 24x
- Serie 28x

Ambas se emplean en:

- Control de motor.
- Misiles: selección de blancos, guías misiles...
- Comunicaciones: terminal, encriptación...

NEC: la empresa

 NEC Electronics Corporation se separó de la empresa NEC y se dedica exclusivamente a semiconductores.

Comercializó el primer DSP.

Tiene su sede en Karawa, Japón

NEC: productos

- Se usan principalmente en comunicación.
 - µPD77111
 - •µPD77110
 - •µPD77111
 - •µPD77112
 - •µPD77113A
 - •µPD77114
 - •µPD77115
 - μPD77210
 - •µPD77210
 - •µPD77213

Zilog: la empresa

- Fundada en 1974 por Federico Faggin
- Sede en San José, California

Z86295	Z89321
Z89175	Z89323
Z89223	Z89371
789273	Z89373

Analog Devices: La empresa

- Fundada en 1965 por Ray Stata y Matt Lorber.
- Se ha convertido en el segundo productor mundial de DSP.
- Gran multinacional
 - -8.900 empleados, 60.000 clientes, 10.000 productos
 - Centros en EUA, Irlanda y Filipinas

ADI: DSPs

 Aplicaciones en todos los campos: uso médico, industrial, casero, militar...

 Sus modelos para todos los rangos: desde nivel usuario a tecnología vanguardia.

Compatibilidad entre modelos: facilita actualización.

ADI: DSP, nomenclatura

Package (p) Core Voltage (v)* S = Metric Quad Flat Pack (MQFP) No Designator = 5 V ST = Low-Profile Quad Flat Pack (LQFP) L = 3 MB. B1, B2 = Plastic Ball Grid Array (PBGA) M = 2.5 V Internal (3.3 V I/O) BZ, BZ1, BZ2 = Lead-Free (PBGA) N = 1.8–1.9 V Internal (3.3 V I/O). Z = Ceramio QFP, Heat Slug Up P = 1.6 VW = Ceramic QFP, Heat Slug Down R = 1.2 VP= PLCC 8 = 1.0 VG = PGA* For Blackfin, TigerSHARC, and BC. CA = Mini-BGA (MBGA) SHARC Processors, this letter refers BCZ. CAZ = Lead-Free (MBGA) to the fabrication process. BP = Thermal-Enhanced FCBGA (SBGA) X-Grade Analog Devices X = Pre-production Digital Signal Processing No Suffix = Production. ADSP-XXxxxvtpp(z or -)qqqX (R or REEL) Tape and Reel Product Number Speed (q) BFxxx = Blackfin Processor ADSP-219x, ADSP-BFxxx. TSxxx = TigerSHARC Processor ADSP-21xxx, ADSP-TSxxx 21xxx = SHARC Processor Speed Grade = Maximum Frequency of Operation 21xx = 16-Bit DSP e.g.: -160 = 160 MHz2199x = Mixed-Signal DSP ADSP-218x, ADSP-2106x Speed Grade = 4 × Maximum Frequency of Operation. e.a.: -160 = 40 MHzTemperature (t) J.K.L.M = Commercial Temp Range* A.B.C = Industrial Temp Range* S,T,U = Military Temp Range* W.Y.Z. = Automotive Temp Range* "Please refer to individual data sheets for specific range.

AD: ADSP-21xx

Primer modelo de DSP de ADI.

Lenguaje ensamblador fácil de programar y leer.

 Diferentes rangos de voltajes, temperaturas, memoria y velocidad.

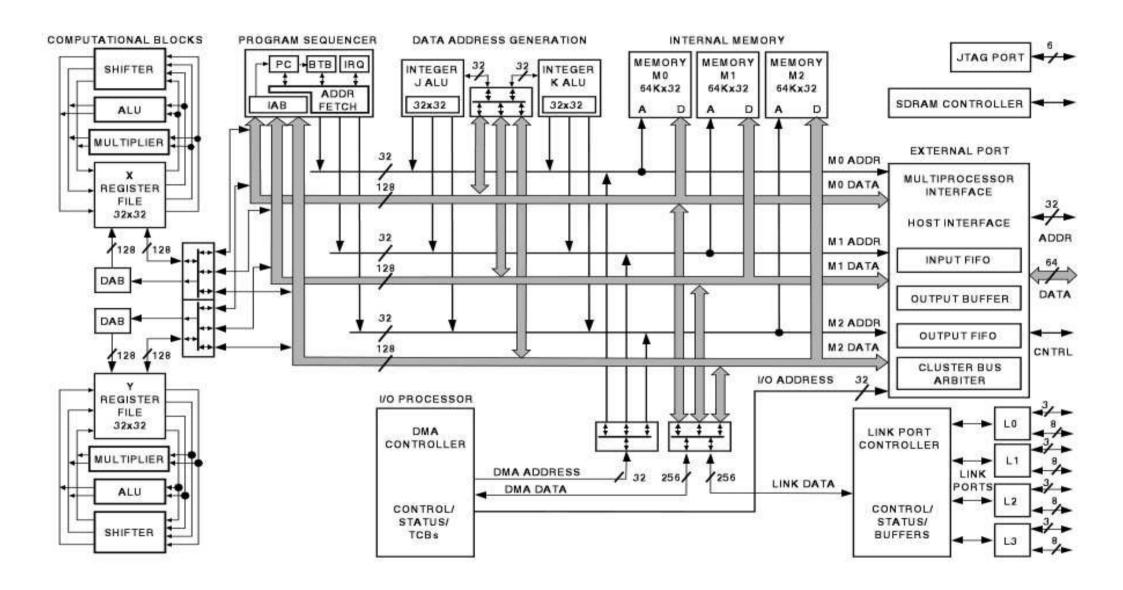
AD: SHARC

Arquitectura Super Harvard.

- Tres generaciones:
 - Primera: 66 MHz, 198 MFlops
 - Segunda: 100 MHz, 600 MFlops
 - Tercera: 400 MHz, 2.4 GFlops

AD: Blackfin

- Para satisfacer la demanda computacional y las restricciones de potencias de los aplicaciones de audio, video y comunicaciones.
- Une instrucciones de procesamiento y control: simplicidad.
- Velocidad: 750 MHz, 1512 MMACs
- Consumo: menor de 0,15 mW/MMAC a 0,8 V



AD: TigerSHARC

- Mejor de ADI y de los mejores del mercado.
- Para altas exigencias de velocidad y precisión.
- Gran aplicación militar.

32-Bit Generic	Speed MHz	Max MMACs	On-Chip Memory	Operating Voltage Core, I/O	Pin/ Package	Price ¹ (10 K)
ADSP-TS101S	250	2000	6M bits	1.2 V/3.3 V	625-PBGA/484-PBGA	\$159.00
ADSP-TS101S	300	2400	6M bits	1.2 V/3.3 V	625-PBGA/484-PBGA	\$193.00
ADSP-TS201S	500	4000	24M bits	1.05 V/2.5 V	576-PBGA	\$186.00
ADSP-TS201S	600	4800	24M bits	1.2 V/2.5 V	576-PBGA	\$205.00
ADSP-TS202S	500	4000	12M bits	1.05 V/2.5 V	576-PBGA	\$149.00
ADSP-TS203S	500	4000	4M bits	1.05 V/2.5 V	576-PBGA	\$47.00

Aplicaciones DSP

- Placas de DSP.
- Aplicaciones espaciales.

Placas de DSP

Los DSP se montan en placas.

 EDO Corp. Desarrolla un sistema inteligencia aeronaval (ALOFTS) que emplea placas de Spectrum Signal Processing.

 Incorporan cuatro DSPs Texas Instruments TSM320C6701 a 167 MHz.

Ejemplo:

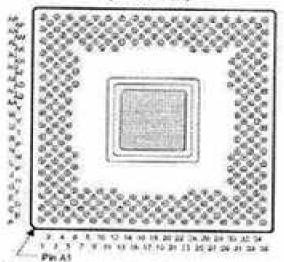
DSP para el espacio

- Aeronáutica y astronáutica íntimamente relacionadas.
- Similitudes (sistemas) y diferencias (requerimientos de radiación).
- En 2001 IBM y Boeing Satellite System crean un DSP para el espacio. Se instaló en un satélite de comunicación.
- Equivale a tres mil ordenadores equipados con Pentiums III

DSPs aviónica

Operación flexible y en tiempo real. Billones de operaciones por segundo (nuevos aviones 1000 BOPS). Más de 200MB de memoria.

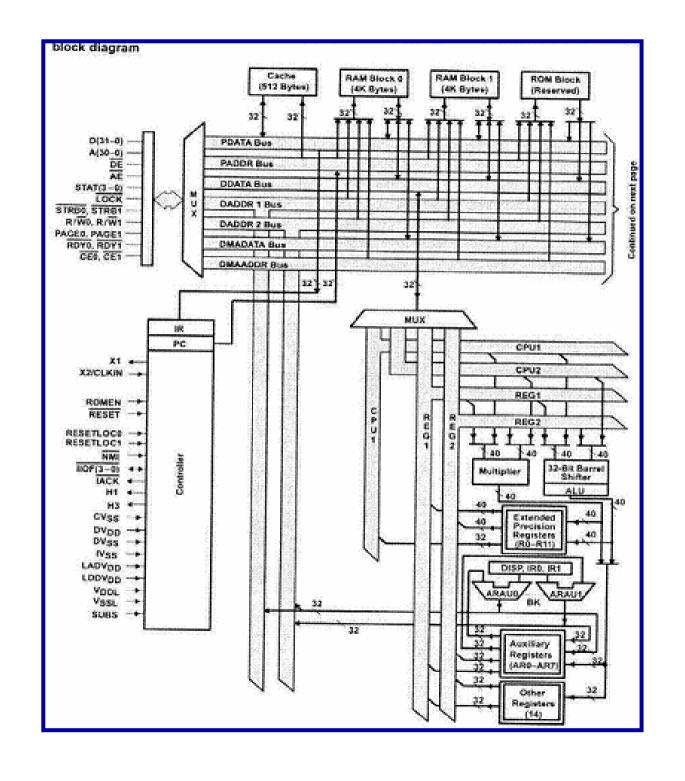
Avión bombardero estratégico:

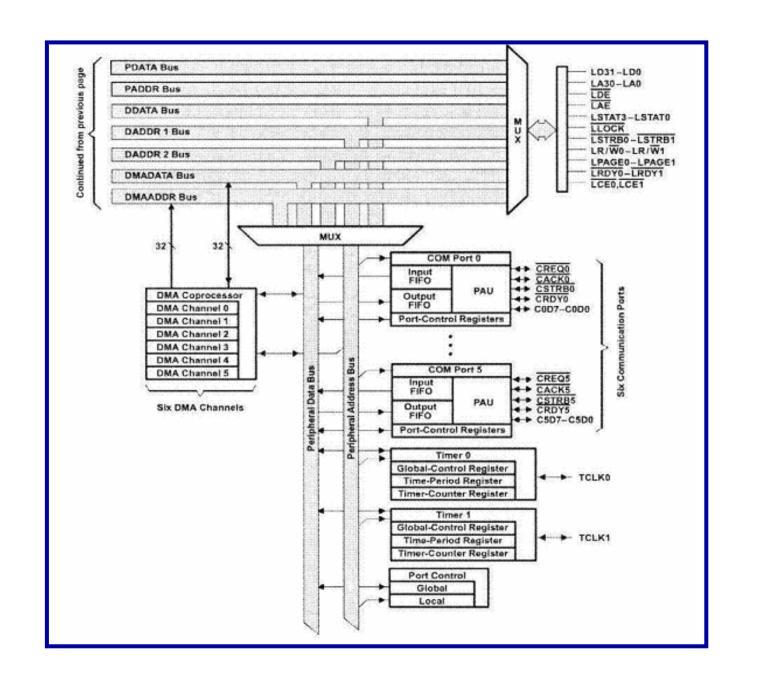

- procesamiento paralelo masivo.
- vuelo largo, gran velocidad y baja altura.
- navegación precisa y programación estricta respecto al tiempo.
- ataques a blancos diferentes y múltiples. Diferentes armas y técnicas de lanzamiento.
- readaptación continua y planificación a bordo.
- -datos extremadamente exactos.

Intel i860, dotado de arquitectura RISC: procesamiento en aviones de combate modernos.

Supercomputador ES-1 de Evans & Sutherland: procesamiento paralelo de capacidad moderada. Cuenta con 128 PEs (elementos de procesamiento).

- Highest Performance Floating-Point Digital Signal Processor (DSP)
 - '320C40-60:
 33-ns Instruction Cycle Time,
 330 MOPS, 60 MFLOPS,
 30 MIPS, 384M Bytes/s
 - '320C40-50:
 - 40-ns Instruction Cycle Time
 - '320C40-40: 50-ns Instruction Cycle Time
- Six Communications Ports
- Six-Channel Direct Memory Access (DMA) Coprocessor
- Single-Cycle Conversion to and From IEEE-754 Floating-Point Format
- . Single Cycle, 1/x, 1/, x
- Source-Code Compatible With TMS320C3x
- Single-Cycle 40-Bit Floating-Point,
 32-Bit Integer Multipliers
- Twelve 40-Bit Registers, Eight Auxiliary Registers, 14 Control Registers, and Two Timers
- IEEE 1149.1[†] (JTAG) Boundary Scan Compatible
- Two Identical External Data and Address Buses Supporting Shared Memory Systems and High Data-Rate, Single-Cycle Transfers:
 - High Port-Data Rate of 120M Bytes/s ("C40-60) (Each Burs)
 - 16G-Byte Continuous Program/Data/Peripheral Address Space
 - Memory-Access Request for Fast, Intelligent Bus Arbitration
 - Separate Address-Bus, Data-Bus, and Control-Enable Pins
 - Four Sets of Memory-Control Signals Support Different Speed Memories in Hardware
- 325-Pin Ceramic Grid Array (GF Suffix)
- Fabricated Using 0.72-pm Enhanced Performance Implanted CMOS (EPIC *) Technology by Texas Instruments (TI*)
- Software-Communication-Port Reset
- NMI With Bus-Grant Peature

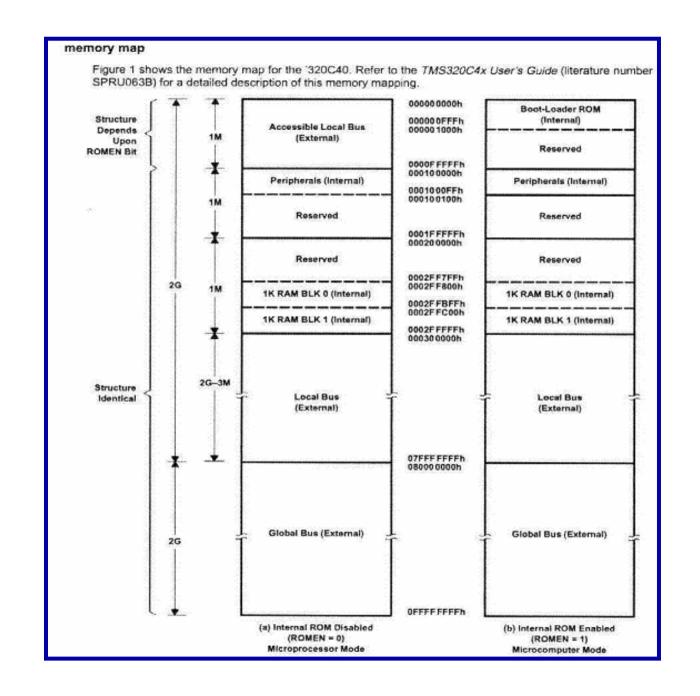

335-PIN OF GRID ARRAY PACKAGE IBOTTOM VIEW;2



See Fin Assignmenta beha and Fin Functions sable for location and description of all game.

- Separate Internal Program, Data, and DMA Coprocessor Buses for Support of Massive Concurrent Input/Output (I/O) of Program and Data Throughput, Maximizing Sustained Central Processing Unit (CPU) Performance
- On-Chip Program Cache and Dual-Access/Single-Cycle RAM for Increased Memory-Access Performance
 - 512-Byte Instruction Cache
 - 8K Bytes of Single-Cycle Dual-Access Program or Data RAM
 - ROM-Based Boot Loader Supports Program Bootup Using 8-, 16-, or 32-Bit Memories or One of the Communication Ports
- IDLE2 Clock-Stop Power-Down Mode
- 5-V Operation

TMS320C40


This section lists signal descriptions for the '320C40 device. The '320C40 pin functions table lists each signal, number of pins, operating mode(s) (that is, input, output, or high-impedance state as indicated by I, O, or Z, respectively), and function. The signals are grouped according to function.

Pin Functions

NAME	NO. OF PINS	TYPET	DESCRIPTION	No.
			GLOBAL-BUS EXTERNAL INTERFACE (80 PINS)	
D31-D0	32	1/0/2	32-bit data port of the global-bus external interface	
DE	1	3.5	Data-bus-enable signal for the global-bus external interface.	
A30-A0	31	0/2	31-bit address port of the global-bus external interface	
ĀĒ	1	1	Address-bus-enable signal for the global-bus external interface	0.000
STAT3-STAT0	4	0	Status signals for the global-bus external interface	
LOCK	3.00	0	Lock signal for the global-bus external interface	
STRB0‡	1	O/Z	Access strobe 0 for the global-bus external interface	
R/Wo‡	1	O/Z	Read/write signal for STRB0 accesses	
PAGE0‡	1	O/Z	Page signal for STRB0 accesses	
RDY0\$	1	1	Ready signal for STRB0 accesses	
CE0‡	1	1	Control enable for the STRB0; PAGE0, and R/W0 signals	
STRB1‡	1	O/Z	Access strobe 1 for the global-bus external interface	
R/W1‡	1	O/Z	Read/write signal for STRB1 accesses	
PAGE1‡	1	0/2	Page signal for STRB1 accesses	
RDY1‡	1	1	Ready signal for STRB1 accesses	
CE1‡	1	1	Control enable for the STRB1, PAGE1, and R/W1 signals	
			LOCAL-BUS EXTERNAL INTERFACE (80 PINS)	
LD31-LD0	32	1/O/Z	32-bit data port of the local-bus external interface	
LDE	1	1	Data-bus-enable signal for the local-bus external interface	
LA30-LA0	31	O/Z	31-bit address port of the local-bus external interface.	
LAE	1	1	Address-bus-enable signal for the local-bus external interface	
LSTAT3-LSTATO	4	0	Status signals for the local-bus external interface	
LLOCK	1	0	Lock signal for the local-bus external interface	
LSTRB0‡	1	O/Z	Access strobe 0 for the local-bus external interface	-
LR/W0	1	O/Z	Read/write signal for LSTRB0 accesses	
LPAGE0	1	O/Z	Page signal for LSTR80 accesses	
LRDYO	1	1.	Ready signal for LSTRB0 accesses	
LCE0	1		Control enable for the LSTRB0, LPAGE0, and LR/W0 signals	
LSTRB1‡	1	O/Z	Access strobe 1 for the local-bus external interface	10101
LR/W1	1	O/Z	Read/write signal for LSTRB1 accesses	
LPAGE1	1	O/Z	Page signal for LSTRB1 accesses	
LRDY1	1	1	Ready signal for LSTRB1 accesses	Grain.
LCE1	100		Control enable for the LSTRB1, LPAGE1, and LR/W1 signals	-

^{†1 =} input. O = output, Z = high impedance

^{\$} Signal's effective address range is defined by the local/global STRB ACTIVE bits.

description

The '320C40 digital signal processors (DSPs) are 32-bit, floating-point processors manufactured in 0.72-µm, double-level metal CMOS technology. The '320C40 is a part of the fourth generation of DSPs from Texas Instruments and is designed primarily for parallel processing.

operation

The '320C40 has six on-chip communication ports for processor-to-processor communication with no external hardware and simple communication software. This allows connectivity to other 'C4x processors with no external-glue logic. The communication ports remove input/output bottlenecks, and the independent smart DMA coprocessor is able to handle the CPU input/output burden.

central processing unit

The '320C40 CPU is configured for high-speed internal parallelism for the highest sustained performance. The key features of the CPU are:

- Eight operations/cycle:
 - 40/32-bit floating-point/integer multiply
 - 40/32-bit floating-point/integer ALU operation
 - Two data accesses
 - Two address register updates
- IEEE floating-point conversion
- Divide and square-root support
- 'C3x assembly language compatibility
- Byte and halfword accessibility

DMA coprocessor

The DMA coprocessor allows concurrent I/O and CPU processing for the highest sustained CPU performance. The key features of the DMA processor are:

- Link pointers allow DMA channels to auto-initialize without CPU intervention.
- Parallel CPU operation and DMA transfers
- Six DMA channels support memory-to-memory data transfers.
- Split-mode operation doubles the available DMA channel to 12 when data transfers to and from a communication port are required.

communication ports

The '320C40 is the first DSP with on-chip communication ports for processor-to-processor communication with no external hardware and simple communication software. The features of the communication ports are:

- Direct interprocessor communication and processor I/O
- Six communication ports for direct interprocessor communication and processor I/O
- 20M-bytes/s bidirectional interface on each communication port for high-speed multiprocessor interface
- Separate input and output 8-word-deep FIFO buffers for processor-to-processor communication and I/O
- Automatic arbitration and handshaking for direct processor-to-processor connection.